DETERMINING EQUATION FOR RUBBERLIKE
THERMOVISCOELASTIC MATERIALS WITH
FINITE STRAINS

A. D. Chernyshov UDC 539.3

Models of rubberlike bodies are constructed through splitting of the tensor of total final strains
of the material into tensors of thermal strains and elastic strains, respectively, according to
the thermodynamics of irreversible processes.

Many rubberlike materials admitting larger reversible strains are quite accurately described by the vis-
coelastic model (Kelvin body) with inclusion of thermal strains [1-3]. Here the total displacements u of par-
ticles of a material are represented as sums of a thermal component u; and an elastic component ug, just as
in the case of an elastoplastic medium [4]. Such an approach makes it possible to demonstrate that thermal
and elastic strains are incompatible apart, that the total strain of a medium with a Cauchy measure is equal
to the product of the tensor of the thermal displacement by the tensor of the elastic displacement components,
and that the relative density of a material can be represented as the product of the thermal relative density by
the elastic relative density.

Three rheological models (Fig. la, b, c) have been proposed for describing the properties of rubberlike
materials. The rectangles with the letters E, V, T represent respectively the elasticity element, the viscosity
element, and the thermal element. Element T accounts only for thermal strains and does not affect the stress
tensor in a rheological model. It will be demonstrated here that, if in the determining equations for model 1b
one approaches the limit where the elastic strains in element E, approach zero and the elasticity coefficients
then change so as to leave stresses finite, model 1a will at the limit approach model 1b. It follows from here
that model 1a will not be thermodynamically inconsistent, if regarded as the limiting case of model 1b in the
given sense. Let us construct the determining equations for the rheological model 1a.

1. Let the location of a particle of a rubberlike material in its initial undeformed state 0 at the initial
temperature T,bedefinedby vector ry and its location in the deformed state 2 at the temperature T be defined
by the vector r,. Fictitiously we divide the entire body into small particles and define the intermediate state
of stress 1 of each particle at the initial temperature Ty by vector r,. The transition from state 0 to state 1
can be characterized by an elastic displacement ug and the transition from state 1 to the final state 2 can be
characterized by a thermal displacement u;. The total displacement u of particles of the material from state 0
to 2 will be related to displacements uy and ug through the equality

1)
The thermal strains of the material are assumed to be isotropic. The tensors C of final strains, C¢ of thermal

strains, and Cg of elastic strains of the material will be expressed through corresponding Cauchy tensors in
Euler variables

o =ty + U,

Jp=limar,/or,, I = limary/dr,, I =0dry/dr, = 3,-3,, (2)
C=23%93, €, =3,3;, C,=23..2,

The symbol "lim" denotes transition to the limit in the fictitious infinitesimal comminution of particles of the
material for the purpose of reaching state 1 from state 2 through a formal change of the temperature T to its
initial level Ty,. Each field of displacements u; and ug is incompatible and forms anonequivalentspace. There-
fore tensors Ct and Cg separately cannot satisfy the equations of compatibility. The tensors of the rates of
total, elastic, and thermal strains will be introduced here in the form

g=—sym(31.9) = sym(gradv) = &, + &, (3)

g, = —sym (3, 13, g = — S:I-S'tl,
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Fig. 1. Simplest rheological models of rubberlike materials with
thermal strains resulting (a, b) and not resulting (c¢) in internal
viscous stresses.

where v is the velocity of particles of the material.
Without detracting from the generality, one can regard the tensor 3¢ as a spherical one
3, =31 (4)

where 3 ¢ is the scalar function of thermal expansion. Applying the theorem of polar expansion to tensors 3
and 3 e’ then using expression (4) and the equality 3 = 3¢-94, we first establish the relation between the
tensor of final strains of the material and the tensors of its elastic strains and of its thermal strains

C == Ct'Cs~ (5)

Let Rg, Rt, and R denote the relative changes in the density of the material upon transitions 0-1, 1—2,
and 0-2, respectively. These relative changes in density are determined by the equalities

Ro=detd,, R =9!, R==detd=RR,. (6)

From the equation of mass conservation and from the independence of Ry and R, we find, with the aid of
relations (6), that Ry and Rg satisfy the individual equations of mass conservation

Rt‘i‘R[ (ST:I):O, Re-f—Rg(Se:I):O. (7)

In the special case of incompressible elastic strains, relations (6), (7), and (3) yield

Ro=1, ei1=0, divet = 8% g cec o, ®)

where C; are the principal values of the C-tensor. Equalities {8) must be used for constructing a model of a
rubberlike body with incompressible elastic strains.

We will assume that the internal energy U, the entropy S, and the free energy A = U — TS depend on T
and on Cg. Then the Gibbs thermodynamic equation [5, 6] can be written in the form

dA - SdT = ModT + M, : dC,. (9)

From this, by virtue of the differentials dT and dCg being independent, we obtain
S = M, —3A/0T, M, = dA4/3C,. . (10)

In order to close the system of determining equations, it is necessary to apply the first law of thermo-
dynamics

py = o:e—divq, (11)
where o is the tensor of true stresses and q is the vector of thermal flux, and to use the Clausius —Duhem
inequality

T~ (ggrad T) + pM,T + pM,: €, — 0 : £ < 0. (12)

Note must be taken of the peculiarity of thermal strains that, unlike elastic, viscous, and plastic strains (or

strain rates) in the determining equations, they are related not to stresses but to the temperature. The sim-
plest temperature dependence is a linear one

InCyp = — 2a (T —Ty), (13)

where a is the coefficient of thermal expansion. In generalizing the relation (13), one can regard o asdepen-
dent on T and Cg or in a still more general case
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C, =C (T, Co). (14)
No experimental study has yet revealed a dependence of thermal strains on elastic strains and, there-
fore, such a dependence must still be regarded as a theoretical possibility only.

In the rheological model 1a the tensor of true stresses ¢ is equal to the sum of symmetric tensors of
elastic stresses sy and viscous stresses sy

0= Set Sy So=5.(T, C), sy =15,(T, Cy, 8). ' (15)

We add the auxiliary equality
cie=58,:€e,+8,:8,— 1/2](s, - s,)dInC,/d}: L. (16)

The symmetric tensors Mg and 8C¢/8Cq are tensor functions of T and Cg and, therefore, commutative
with Co. Using this property and equality (16), we transform the inequality (12) to

T—'<q-gradT>+(pMo+ “;' —"%‘%)T—{[me-ce

, (17)
+(se: 1) ML.Ce <+ se] : ee} — [sv +(sy: 9InCy -CE] 1e, <L 0.
An analysis of the thermodynamic inequality (17) yields
:I 9lnC
= —AgradT, A>0, M, —— 2>~ 90%t
d & Zo %  oT
5, = — 9 0A >~Ce— 0InCy G, (502 1), (18)
aC, oc, -
dlnCe
S, — (5p01 —.C, |18, >0,
[ ( ) ac, :, &y =2
Resolving the third of equalities (18) with respect to sg, we obtain
0InC 04 ] / dInC = 0A
Se = 2 L -CE( :C )14 L:¢, — 2 -Ce. (19)
ac, ac, e, °ac,

After the expression (18) for M; has been inserted into the equality (10) for S, it becomes evident that
the state function S depends not only on T and Cg but also on the invariant o:1 and consequently on &y. It fol-
lows immediately that the internal energy U can also depend not only on T and Cg but also on &y, which con-
tradicts the thermodynamic definitions of internal energy and of entropy. This inconsistency of relations (18)
can be removed in various ways. One can assume

s,: 1 =0, (20)

with no bulk viscosity, e.g., which is sometimes done in the case of a viscous gas. A drawback of condition
(20) is that in the case of anisotropic thermal strains an assumption analogous to (20) would lead to the condi-
tion sy, = 0, i.e., to the absence of the viscous element in the model 1a.

We introduce the notation
Ne=s,4(sp: D) c,_;.a InC,/9C,. (21)
Resolving expression (21) with respect to sy, we obtain
s, =N, — (N.: ) [1 - C,: 0InC/0C,]~! C,- 0 In C/DC,. (22)

Expression (21) transforms the last of inequalities (18) to
No (T, C,, #,):2,>0. (23)

The simplest dependence of the tensor function N, on &y which satisfies inequality (23) is

Na = ga (T’ Ce) (81: : l) I -+ Qna (T’ Ce) €y, ga} O’ Na > 0, (24)
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where £, and 7, are viscosity coefficients. When condition (20} is satisfied, then the equality Sy=Ng, £a=0
will hold true.

2. We will now demonstrate that the determining equations for the model 1b are not thermodynamically
inconsistent and that there is an ultimate expression for them which corresponds to an elasticity element E,
where strains have vanished. Then, formally, model 1b becomes model 1a. The deformation of the material
according to the model 1b is determined by the tensors 2 3,and 3¢, similar to the tensors (2). Without de-
tracting from the generality, one can regard the tensor 3,,asasymmetric one and the thermal strains as iso-
tropic ones. The tensor 5 will be a spherical one

9 =C%L 9,=3; =07

The tensors of final strains C;, C;, Ct and the tensors of strain rates g, &, & in the rheological ele-
ments E;, Ey, and T are
C; =313, C=299, ¢ =51,
g, = —sym (3 '3, + 97".97".9,.9,— 37"y, (29)
gy = — 35,1

The expressions for the tensors &, & have the form of a recurrence relation and satisfy the equality

e=¢g +ete (26)

t’
where € is the tensor of total strain rate in the material. In the rheological model 1b hold true the relations
c=8-+s,=s, g=2¢, C=C,. (27)

Just as in the model 1a, we assume here that the state functions U, S, and A depend on T, C;, and C,. We
write the second law of thermodynamics as

018 —pM,T — oMy : G, — pM; : ¢, — T—' (qgrad T) >0, (28)
S =M, — 0AIOT, M; =04/0C; (i=1, 2).
The first term o: € in expression (28) we then transform to
Cile=S8:815S,:818,:8 08 (29)
By virtue of relations (25) and (29), the inequality (28) can be split into two expressions
q=—AgradT, AZ=0,

1y A dingC
c/te.crt 2 C+(o: 1 Loig—
2 G-L2 + 20 ac] 1 (6 ) 0C1 g1 (30)
0A 01nCr 1 (6:) oInC ;
8 L 90—y (5 )G 1 2 97D, — | oMy A e — LT 0.
[(S_ 20 ac, 2t (82t 1) i, ] 2 -3, [p 0 3 5 } =

The coefficient of T inside brackets in inequality (30) does not depend on T. Neither do all other terms in this
expression and, therefore, this coefficient must become equal to zero
(s;: 1) 0InCy — 0, fe, S—— 0A  (s:]) 0dInGCy . (31)

M 1
P =g ar or % T

The coefficient of 37'-3, inside brackets in inequality (30) does not depend on the tensors of strain rates g
and &,, since it is determined only by the properties of the elastic element E,. Assuming that also all re-
maining terms in expression (30) do not depend on 37'.3,, we conclude that also this coefficient must become
equal to zero ‘

s+ (51 1) Ong, -G+ 20 o4 -G, =0. (32)
2 2
Expression (32) yields
04 dinC y1—t dInC, 94
G =5,=20 :C (1] L.C —t.C,—2p - Cs. (33)
: ( ac, )[ + ( ac, 2)] aC, ac,
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The thus simplified inequality (30), on the basis of expressions (31) and (32), can be written in the form

0A a1nC, alneC,
-C o | i L.Clie,>=0.
ac, b ac, ac, 1] =

(34)

[C%”-Src?‘” +20 -cl} tey [Cé”-sv-c;‘” (s

The value of the coefficient of & in expression (34) is determined by the elastic properties of the rheological
element E;, these properties depending on €. Therefore, equating this coefficient to zero will yield an equa-
tion describing the properties of the rheological elasticity element E;, namely

1/ 0A dInC =l dInC 0A 1/2 35
= 20C;/2. :¢,) (1 L. t.C — .C, |-Cy'%: (39
$1 pLz [( ac, 1) ( + ac, 1 ac, 1 ac, 1 2
With the aid of this equation, we now rewrite inequality (34) as
Ny (T, Cy, C,, &) 8,20, (36)

where
N, = C3/%.5,-C7"% L (s, : 1) C;- 8 In C/3C,.

The tensor of stresses sy in the viscosity element V can be expressed through the tensor of stresses N in the
form

/ —1
5, :C;”Q.[Nb—(Nb:I) (1 + a_g‘gi_:cl) ‘”réct .cl}-cé”. (37)

1 1

The simplest dependence of the Nj-tensor on &, which satisfies inequality (36) is

Nb = ob (\T? Cla C2) (sv : l) I + 21]1) (T: Ch CZ) €, Eb > 0’ le> O’ (38)

where £y and 7y, are viscosity coefficients.

The system (31), (33), (35), (37), (38) constitutes the determining equations for the model 1b, In con-
trast to the preceding case, here the entropy (31) is, according to relation (33), a state function so that the
model 1b, unlike the model 1a, is notthermodynamically inconsistent.

The model 1a can be obtained from the model 1b through passage to the limit where strains in the elas-
ticity element E, vanish. In the passage to the limit it is necessary, at the same time, that the elastic pro-
perties of element E; which appear in the expression for the free energy A assume those limiting values which
will ensure the equality o = s, (33), where the tensor of true stresses ¢ has been assumed to have some fixed
value

C,— Iwhen s, — ¢ = const. (39)

The entropy in the expression for it always remains a state function during passage to the limit, but not any
more in the ultimate expression (10) for it. All other determining equations for the model 1b become at the
limit the corresponding equations for the model 1a.

3. Thermal strains of a classical viscous fluid are accounted for only in the equation which relates the
hydrostatic pressure to the density and the temperature. Its viscous properties, however, such a fluid exhibits
immediately with the appearance of a strain rate and regardless of what has produced it, whether mechanical
action orheating, Such a manifestation of the viscous properties can be incorporated in a rheological model
describing the properties of rubberlike materials. A model like this is shown in Fig. lc.

The deformation of the material is in this model determined by the tensors 3 and 3 (2), the d¢-tensor
being a spherical one. The state functions U, S, and A depend on T and C; so that the second law of thermo-
dynamics appears in the form '

6:e—pM,T —pMy;: € — T—1(q-grad T) > 0. (40)
The ¢: € term in expression (40) for this model transforms to
GiE=518 +8:8, 15,18 where $;+ 5, =0 (41)

Inserting expressions (2), (3), and (41) into expression (40) yields the inequality
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OlnCy -Clzsl+2pM1-CI:sl—pM0T~ls_l_—L OlnG

Syt &8 28 (521
v 1 1‘I“(1 ) dC1 9 oT

T—T-(q-grad Ty >0. (42)

This inequality, after appropriate simplifications analogous to those made in inequality (28), splits into the
relations :

: 0A (s;: 1y aInC
e —AgradT, A>0, S~ — 22 i) OM% (43)

d ¢ = o o ol

0A /., dInGC —1 dmcC 0A
$; = 2 ——:C) 14 —=t:C —l..C,—2 - te (44)
! p( ac, ( ac, 1) sc, G oo, v wie=0
The simplest linear dependence of the sy-tensor on € which satisfies inequality (44) is

s, =E5(T, C)(e: 1+ 2n(T, Ce, E20, n=>0. (45)

Relations (43)-(45) are the sought determining equations for this model. They can be greatly simplified
by a change from the independent thermodynamic variables (T, C,) to the variables (T, C). After this change,
Fqs. (43)-(45) become

q=—AgradT, A>0, A= A(T, C), S=—04/T, (46)
s; = — 20C-04/0C, s, =s,(T, C, &), s,:e=0.

There arises the question: which of the models considered here is preferable? The models 1b and 1c
differ in that the total strain due to instantaneous heating (thermal shock) of a free beam without load is in the
first case equal to the instantaneously appearing thermal strain, which then does not change with time, while
in the second case it will relax, i.e., change with time from its initial magnitude to that of the thermal strain.
On the basis of this difference, one can in an appropriately set up experiment establish which of these two mo-
dels is suitable for describing a specific rubberlike material.
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